Apprentissage d'une loi de commande optimale d'un petit quadrotor pour le vol dans des tuyaux cylindriques

Vladislav Tempez

Directeurs de thèse : Jean-Baptiste MOURET, Franck RUFFIER

Loria, INRIA

27 Juin 2022

Les environnements souterrains

Où et quoi?

- Bâtiments et tunnels
- Conduits d'aération
- Pyramides!

Pourquoi avec des robots ?

- Trop étroit pour des humains
- Dangereux, difficile d'accès, instable, mal aéré

Pourquoi avec des robots volants?

- Évite un sol encombré (objets, liquide, etc)
- Gère les portions verticales ou pentues
- Parcours rapide de longs réseaux

Les environnements souterrains, exemple d'usage

Les environnements souterrains: difficultés pour les drones

Difficultés

- Se perturbe lui-même (flux d'air en intérieur)
- Étroit (peu de marge de manœuvre, risque de collision)
- Instable (collision=crash)

Photo: nicolasdohr.com

Vidéo drone perturbé (tuyau de 65cm)

Drone volant dans un tuyau de 65cm de diamètre

Le Crazyflie

Caractéristiques du Crazyflie

- 27g
- 4 rotor à 0.16N de poussée maximal (0.64N au total)
- 10cm de diagonale
- Firmware open source
- Système de modules pour ajouter ou retirer des fonctionnalités
- Plusieurs versions à partir de la même carte (moteurs brushless, variante plus grande)

Le quadrotor Crazyflie avec le deck multiranger (télémètres laser)

Contributions

Mesure et Modélisation

- Dispositif et protocole de mesure des perturbations statique dans un tuyau
- Collecte de données de perturbations dans des tuyaux de diamètre différent
- Apprentissage d'un modèle pour interpoler ces perturbations en tout point
- 4. Deux méthodes d'estimation de la position dans un tuyau.

Commande

- Formulation et implémentation d'un contrôleur optimal pour quadrotor pour la stabilisation et le suivi de trajectoires
- Intégration du modèle des perturbations au contrôleur optimal
- 3. Apprentissage supervisé d'un réseau de neurones imitant le contrôleur optimal

Contributions

Plan

Introduction

Perturbations dans un tuyau

Introduction

Dispositif et Protocole de mesure Apprentissage d'un modèle d'interpolation

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Objectifs

- Vérifier l'existence des perturbations supposées
- Quantifier et cartographier ces perturbations
- Modéliser ces perturbations

Photo: nicolasdohr.com

État de l'art

Effet de sol

Répulsion proche du sol, vu sur les hélicoptères depuis des décennies¹

Effet de plafond

Effet d'aspiration à proximité d'un plafond²

Effet d'interaction entre rotors

Par des techniques de Vélocimétrie par Image de Particule (PIV): analyser l'interaction de flux de plusieurs rotors adjacents³

Dans un tuyau

Rien

¹Cheeseman et Bennett, Aeronautical Research Council Reports and Memoranda 3021, 1955

 $^{^2}$ Powers et al., 13th International Symposium on Experimental Robotics, 2013

³Shukla et Komerath, Drones 2.4, 2018

Plan

Introduction

Perturbations dans un tuyau

Introduction

Dispositif et Protocole de mesure

Apprentissage d'un modèle d'interpolation

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Mesure des perturbations dans un tuyau

Mesure en vol libre

- Mesure en un point précis difficile
- Autonomie faible, nécessite une intervention régulière
- Robot instable, difficile à automatiser (crash fréquent)
- Mesure de la position difficile dans un tuyau

Mesures en statique (capteur de force 6 axes)

- Fixé donc pas de crash
- Alimenté donc autonome
- Mesure directe des perturbations

Dispositif de mesure

Protocole de mesure et traitement

- Mesure en extérieur (valeur de référence, 5s, moteurs allumés)
- Placement en intérieur (bras robot)
- Mesure en intérieur (différence à la référence, 10s)
- Filtrage à 1Hz de la mesure intérieure
- Valeur moyenne = perturbation statique
- Incertitude contenue dans la variance du signal

Séquence vidéo de collecte de données (accéléré x10)

Vidéo de la collecte de données (accéléré x10)

Perturbations mesurées (65cm)

- $\simeq 100$ points par tuyau (20s/point)
- Mesures dans 3 tuyaux (40cm, 50cm, 65cm)
- Forces non négligeables (0.1N)
- Effet de sol
- Aspiration par les parois
- Pas d'incertitude pour ne pas surcharger

1 flèche = 1 mesure (en N)

Sur les autres tuyaux

Plan

Introduction

Perturbations dans un tuyau

Introduction
Dispositif et Protocole de mesure

Apprentissage d'un modèle d'interpolation

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Pourquoi?

 Pour l'utiliser dans un futur contrôleur (besoin d'estimer en des points intermédiaires)

Fonction de prédiction des forces apprise:

$$f:(x,z)\mapsto (f_x,f_z)$$

Mesure dans un tuyau de 40cm

Processus gaussien¹ (GP) ou réseau de neurones² (NN)?

Avantages (NN)

- Classique pour l'apprentissage supervisé
- Peu coûteux à évaluer

Limites (NN)

- Apprentissage coûteux
- Peu efficace en régime de données faible
- Sur-apprentissage

Avantages (GP)

- Efficace de régime de données faible
- Incertitude intégrée à la prédiction

Limites (GP)

- Coût d'évaluation cubique en la quantité de données
- Difficile à mettre en place en régime de données important

¹Rasmussen et Williams, MIT Press, 2006

²Haykin, Prentice Hall 1999

Choix de l'architecture

- Séparation des points en deux ensembles (90-10)
- Appris sur 90% des points
- Testé sur 10% restants

- Erreur plus faible pour GP
- Erreur moins dispersée pour GP
- GP utilisé pour la suite

Comparaison des erreurs sur l'ensemble de test

Visualisation de l'erreur de prédiction

Mesures (symetrisées) - Prédictions

Résultat et analyse des perturbations (65cm - GP)

- Schéma symétrique
- Assez régulier (conséquence modélisation par GP)

Résultat et analyse des perturbations (65cm - GP)

- Effet de sol
- Aspiration latérale
- Faible intensité mais instables
- Constantes vers le bas
- Stable et de faible intensité

Bilan

Observations

- Perturbations statiques non négligeables
- Effet de sol, mais aussi une aspiration par les parois
- Le modèle d'interpolation permet d'observer des zones stables et instables

Limites

- Composantes statiques uniquement
- Probable biais causé par le dispositif de mesure

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor Introduction

Modèles et équations d'un quadrotor Problème du contrôle optimal

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Objectifs

- Commander un robot à la dynamique non linéaire
- Prévenir, rejeter ou limiter les perturbations dues au tuyau
- Exercer un contrôle précis pour éviter les collisions

État de l'art

Backstepping control

Approche standard: organisation hiérarchique et récursive des états du robot à commander¹.

Apprentissage par renforcement

Recherche d'un contrôleur uniquement avec des exemples d'interaction (environnement simulé) ².

Commande Optimale et Prédictive

Permet l'intégration d'un modèle des perturbations plus aisée, capacité à planifier et à prévoir³⁴. S'appuie sur la résolution de problème d'optimisation par des solveurs bien établis.

¹Lee, Leok et McClamroch, 49th IEEE Conference on Decision and Control, 2010

²Molchanov et al, IROS, 2019

³Carlos et al, ICARCV, 2020

⁴Bansal et al,IEEE 55th Conference on Decision and Control, 2016

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Introduction

Modèles et équations d'un quadrotor

Problème du contrôle optimal

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

État d'un quadrotor

Représentation de l'état

$$p = \overrightarrow{O_W O_B}$$

$$v = \frac{dp}{dt}$$

$$R_B^W = \left([x_B]_W \middle| [y_B]_W \middle| [z_B]_W \right)$$

$$\omega_{WB} = \text{vitesse angulaire}$$

$$f_i, \quad i \in [|0, 4|]$$
force exercée
$$par \text{ le rotor } i$$

Schéma d'un quadrotor

Dynamique d'un quadrotor

Équation de la dynamique

Schéma d'un quadrotor

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Introduction
Modèles et équations d'un quadrotor
Problème du contrôle optimal

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Formulation

Objectif

Trouver la commande $\mathfrak u$ telle que l'état du robot x minimise un coût C préalablement spécifié¹.

Notations

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$ la fonction de coût
- f(x(t), u(t)) → x la dynamique de l'état
 x₀, t₀ l'état et l'instant initiaux

Problème de contrôle optimal

$$\begin{split} \mathfrak{u}^* &= \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T}, \mathcal{U})}{\operatorname{arg \, min}} \int_{t_0}^{t_f} C(x(t), \mathfrak{u}(t)) dt \\ x(t_0) &= x_0 \\ \dot{x}(t) &= f(x(t), \mathfrak{u}(t)) \end{split}$$

¹Betts, Advances in Design and Control, 2010

Formulation

Objectif

Trouver la commande $\mathfrak u$ telle que l'état du robot x minimise un coût C préalablement spécifié¹.

Notations

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$ la fonction de coût
- f(x(t), u(t)) → x la dynamique de l'état
 x₀, t₀ l'état et l'instant initiaux

Problème de contrôle optimal

$$\begin{split} & \overset{\text{Commande}}{\underset{\text{Optimale}}{\text{Optimale}}} & \to \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} & \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ & x(t_0) = x_0 \\ & \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \end{split}$$

¹Betts, Advances in Design and Control, 2010

Formulation

Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié¹.

Notations

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$ la fonction de coût
- $f(x(t),\mathfrak{u}(t))\mapsto\dot{x}$ la dynamique de l'état
- x_0, t_0 l'état et l'instant initiaux

Problème de contrôle optimal

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} & \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ x(t_0) = x_0 \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \end{array}$$

¹Betts, Advances in Design and Control, 2010

Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié¹.

Notations

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$ la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$ la dynamique de l'état
- x_0, t_0 l'état et l'instant initiaux

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} & \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ x(t_0) = x_0 & \text{Accumulation du} \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) & \text{deconstant} \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) & \text{deconstant} \\ \end{array}$$

¹Betts, Advances in Design and Control, 2010

Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié¹.

Notations

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$ la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$ la dynamique de l'état
- x_0, t_0 l'état et l'instant initiaux

Commande Optimale
$$\to \mathfrak{u}^* = \mathop{\arg\min}_{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})} \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t))dt$$
 $x(t_0) = x_0$ Accumulation du coût sur la durée de la trajectoire

¹Betts, Advances in Design and Control, 2010

Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié¹.

Notations

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$ la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$ la dynamique de l'état
- x_0, t_0 l'état et l'instant initiaux

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} \\ \qquad \mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U}) \\ \end{array} \\ \begin{array}{c} \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ \text{Coût de l'état courant} \\ \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \\ \end{array} \\ \begin{array}{c} \text{Accumulation du} \\ \text{coût sur la durée} \\ \text{de la trajectoire} \end{array}$$

¹Betts, Advances in Design and Control, 2010

Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié¹.

Notations

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$ la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$ la dynamique de l'état
- x_0, t_0 l'état et l'instant initiaux

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} \\ \qquad \mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U}) \\ \text{Condition initiale} \\ \text{Condition initiale} \\ x(t_0) = x_0 \\ \text{Dynamique de} \\ \text{l'état} \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \end{array} \\ \begin{array}{c} \text{Espace des commandes} \\ \text{Commandes} \\ \text{Coût de l'état courant} \\ \text{Accumulation du coût sur la durée} \\ \text{de la trajectoire} \\ \end{array}$$

¹Betts, Advances in Design and Control, 2010

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k,}{\operatorname{argmin}} \sum_{i=0}^{k+1} C(x_i, u_i)$$
 $x_0 = x(t_0),$
 $\forall i \in [0, k],$
 $x_{i+1} = f(x_i, u_i, dt)$

¹Andersson et al, Mathematical Programming Computation 11.1, 2019

²Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*,x^*)= \mathop{\mathsf{argmin}}_{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \ \mathsf{correspondants}}} \sum_{i=0}^{k+1} C(x_i,u_i)$$

¹Andersson et al, Mathematical Programming Computation 11.1, 2019

²Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \mathop{\rm arg\,min}_{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}} \sum_{i=0}^{k+1} C(x_i, u_i)$$

¹Andersson et al, Mathematical Programming Computation 11.1, 2019

²Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{optimales et d'états correspondants}}{\sup u \in \mathcal{U}^k, \ x \in \mathcal{X}^k,} \sum_{i=0}^{k+1} C(x_i, u_i)$$

$$x_0 = x(t_0),$$

$$\forall i \in [0, k],$$

$$x_{i+1} = f(x_i, u_i, dt)$$

¹Andersson et al, Mathematical Programming Computation 11.1, 2019

²Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{\substack{\text{dimension finie} \\ \text{dimension finie} \\ u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{Séquence de commandes optimales et d'états correspondants}} \underbrace{\sum_{i=0}^{k+1} C(x_i, u_i)}_{\substack{\text{Coût de l'étape i} \\ \text{discrète}}} \times_{0} = x(t_0), \\ \forall i \in [0, k], \\ x_{i+1} = f(x_i, u_i, dt)$$

¹Andersson et al, Mathematical Programming Computation 11.1, 2019

²Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}}{\operatorname{argmin}} \sum_{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}} \sum_{i=0}^{k+1} C(x_i, u_i)$$

¹Andersson et al, Mathematical Programming Computation 11.1, 2019

²Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}{\operatorname{arg\,min}} \sum_{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \operatorname{correspondants}} \sum_{i=0}^{k+1} C(x_i, u_i) \sum_{i=0}^{k+1} C(x_i, u$$

¹Andersson et al, Mathematical Programming Computation 11.1, 2019

²Wächter et Biegler, Mathematical Programming 106.1, 2006

Principe et apport de la commande prédictive

Principe de la commande prédictive¹

- Calculer une "bonne" trajectoire en boucle ouverte sur une durée finie
- Exécuter la première commande
- Planifier à nouveau à partir de l'état actuel

Avantages

- Referme la boucle en utilisant un retour d'état à chaque instant
- Tire parti des capacités de planification et du modèle utilisé
- Agnostique vis à vis de l'algorithme de calcul de trajectoire en boucle ouverte (ici résolution du problème de contrôle optimal)

¹Rawlings, Mayne, Diehl, Nob Hill Publishing Madison, 2017

Suivi de trajectoire avec intégration du modèle appris des perturbations au contrôle optimal

Simulateur

- Dynamique du drone
- Modèle GP appris des perturbations statiques

Contrôle optimal

- Dynamique du drone
- Modèle GP appris des perturbations statiques

- Tâche de suivi de trajectoire
- Proximité des parois croissante (zone instable)

Suivi de trajectoire avec intégration du modèle appris des perturbations au contrôle optimal (Référence)

Suivi de trajectoire avec intégration du modèle appris des perturbations au contrôle optimal (Trajectoire)

Suivi de trajectoire SANS intégration du modèle appris des perturbations au contrôle optimal

Simulateur

- Dynamique du drone
- Modèle GP appris des perturbations statiques

Contrôle optimal

- Dynamique du drone
- •

- Tâche de suivi de trajectoire
- Proximité des parois croissante (zone instable)

Suivi de trajectoire SANS intégration du modèle appris des perturbations au contrôle optimal

Bilan commande prédictive basée contrôle optimal (MPC)

Avantages

- Intégration générique d'éléments à la dynamique
- Compatibilité avec des solveurs externes et bien établis
- Capable de prévoir les perturbations pour voler proche des parois malgré l'aspiration

Inconvénients

- Coût en calcul important pour la résolution de nombreux problèmes de contrôle optimal (plusieurs dizaines de fois le temps réel)
- Assez dépendant de la qualité du modèle
- Nécessité d'adapter les paramètres au robot (pas de temps, horizon)

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation Introduction

I neorie

Autres aspects abordés

Conclusion

Annexe

Pourquoi apprendre?

- MPC: trop long
- Capacité de calcul faible
- Peu d'espoir d'améliorer assez le MPC pour tourner en temps réel

- Un NN à 200Hz tourne sur le Crazyflie
- Approximation du MPC par un NN appris (imitation, supervisé)

Temps de calcul (s) pour 1s de trajectoire par le MPC, distribution pour 20 trajectoires

État de l'art

Apprentissage par imitation

 À l'aide de démonstrations d'un pilote d'hélicoptère pour des acrobaties¹

Démonstration guidant l'apprentissage

 Démonstrations choisies proches de ce que peut faire le contrôleur en cours d'apprentissage²

Démonstration pour initialiser un contrôleur

• Imitation préalable à un apprentissage par renforcement³

 $^{^{1}}$ Abbeel, Coates et Ng, The International Journal of Robotics Research 29.13, 2010

²Levine et Koltun, ICML, 2013

³Lin et al. IROS, 2019

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Introduction

Théorie

Résultats et limites

Autres aspects abordés

Conclusion

Annexe

Objectifs

• Trouver les paramètres θ d'un contrôleur \mathcal{C}_{θ} qui imite au mieux un contrôleur expert $\mathcal{C}_{\mathcal{E}}$

$$\theta^* = \arg\min_{\theta} \underset{x \sim P_{\theta}(x)}{\mathbb{E}} \left[||\mathcal{C}_{E}(x) - \mathcal{C}_{\theta}(x)||^2 \right]$$

Objectifs

• Trouver les paramètres θ d'un contrôleur \mathcal{C}_{θ} qui imite au mieux un contrôleur expert $\mathcal{C}_{\mathcal{E}}$

$$\begin{aligned} & \theta^* = \underset{\theta}{\text{arg min}} \underset{x \sim P_{\theta}(x)}{\mathbb{E}} \left[||\mathcal{C}_{E}(x) - \mathcal{C}_{\theta}(x)||^2 \right] \\ & \text{Paramètres} \\ & \text{optimaux du} \\ & \text{contrôleur} \end{aligned}$$

Objectifs

• Trouver les paramètres θ d'un contrôleur \mathcal{C}_{θ} qui imite au mieux un contrôleur expert $\mathcal{C}_{\mathcal{E}}$

$$\begin{array}{l} \theta^* = \arg\min_{\theta} \sum_{x \sim P_{\theta}(x)}^{\text{Commande}} |||\mathcal{C}_E(x) - \mathcal{C}_{\theta}(x)||^2] \\ \text{Paramètres optimaux du contrôleur.} \end{array}$$

Objectifs

• Trouver les paramètres θ d'un contrôleur \mathcal{C}_{θ} qui imite au mieux un contrôleur expert $\mathcal{C}_{\mathcal{E}}$

Objectifs

• Trouver les paramètres θ d'un contrôleur \mathcal{C}_{θ} qui imite au mieux un contrôleur expert \mathcal{C}_{E}

Résolution (DAGGER)

Principe de DAGGER¹

- Approche la distribution des états rencontré par échantillonnage itéré
 - A partir d'un ensemble initialement vide
 - Générer une trajectoire avec \mathcal{C}_{θ_0}
 - Demander à l'expert les commandes optimales pour les états de la trajectoire générée
 - Mettre à jour θ pour imiter l'expert
 - Recommencer
- Fait coïncider la distribution des états rencontré avec ceux utilisés pour l'apprentissage
- Expert = contrôle optimal
- Ajout à l'ensemble d'apprentissage de toute la trajectoire calculée lors de la résolution du problème de contrôle optimal

¹Ross, Gordon et Bagnell, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011

Ensemble de données d'apprentissage $t_1 = C_E(x_1), \dots, C_E(x_n)$ $t_i = C_E(x_i1), \dots, C_E(x_in)$

Étape j

Trajectoire désirée

Trajectoire de la commande apprise

Illustration DAGGER

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Introduction

Résultats et limites

Autres aspects abordés

Conclusion

Annexe

Architecture du contrôleur appris

Tâche de stabilisation

- Amener le drone au centre du tuyau à l'horizontale
- État de départ perturbé
 - Pas au centre
 - Vitesse non nulle
 - Orientation non horizontale
- Perturbations plus faciles que pour le suivi

Comparaison des performances de stabilisation en fonction de la connaissance de l'environnement (tuyau 65cm)

Suivi de trajectoire

Suivi de trajectoire

- Référence en entrée: quantité de données pour apprendre trop importante
- Solution: différence entre l'état et la référence en entrée
- Exploitation du modèle des perturbations difficile

Limite: suivi de trajectoire (tuyau 65 cm simulé, 20 répliques)

Adaptation

Adaptation

- Apprendre un contrôleur en vitesse (poids nul pour la position dans le coût MPC)
- Modifier la référence en vitesse pour asservir la position

Résultat adaptation: distribution de l'erreur de suivi (tuyau 65cm, 20 répliques)

Suivi de trajectoire, comparaison au MPC (tuyau 65cm)

Conclusion

- Contrôleur appris capable de stabiliser et suivre des trajectoires
- Intégration du modèle de l'environnement possible et utile
- Temps de calcul bien plus faible avec le contrôleur NN appris (600Hz vs 0.3Hz max)

Distribution du temps de calcul de la commande pour 1s de trajectoire

Estimation d'état

- Estimer la position pour un contrôle précis
- Estimation de l'équation des droites portées par les murs : lacet et position longitudinale du drone
- Inversion de l'équation de la distance aux parois : position verticale et longitudinale

Localisation avec des télémètres

Estimation d'état

- Estimer la position pour un contrôle précis
- Estimation de l'équation des droites portées par les murs : lacet et position longitudinale du drone
- Inversion de l'équation de la distance aux parois : position verticale et longitudinale

Estimation avec équations de droite

Estimation d'état régression linéaire données

Organisation d'une flotte de drones

Algorithme de positionnement d'une flotte dans un tunnel

- Ajustement automatique et décentralisé de la position pour le maintien d'un contact radio ¹
- En régulant la qualité de signal
- Uniquement pour des environnements en 1D
- Contribution: preuve de l'optimalité et de la correction de l'algorithme

¹Laclau et al, Frontiers in Robotics and Al 8, 2021

Séquence vidéo de la flotte de drones

Vidéo du contrôle décentralisé d'une flotte de drones

Limites et extensions de mes travaux de thèse

Limites

 Estimation d'état validée en simulation mais mais à affiner pour les données réelles

- Mesure des perturbation statiques uniquement
- Biais dans les mesures (effets au bord, présence du dispositif)
- Uniquement réalisé pour un drone non incliné

Extensions

 Apprentissage d'un contrôleur directement à partir des mesures des capteur

 Utiliser un premier contrôleur avec modèle, récolter des données en vol libre, recommencer

Limites et extensions de mes travaux de thèse

Contrôleur appris par imitation

- Contrôleur appris par imitation pas encore embarqué
- Robustesse du contrôleur appris par imitation probablement limitée (évaluée uniquement avec le "vrai" modèle et en simulation)
- Un contrôleur similaire fait voler le Crazyflie (Corentin Bunel)

Autres approches indépendantes

- Architecture complètement actionnée¹ (non coaxiale) pour un meilleur rejet des perturbations du tuyau
- Apprentissage d'autre contrôleur par imitation: contrôle à plus haut niveau, apprentissage des gains d'un contrôleur hiérarchique

¹Rashad et al, IEEE Robotics Automation Magazine 27.3, 2020

Questions?

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Perturbations

Contrôle optimal Apprentissage Estimation d'état U-chain

Composante dynamique des perturbations

Tuyau de 50cm de diamètre

1 flèche = 1 mesure (N)

- Effet de sol plus important
- Aspiration par les parois similaire
- Forces similaires (hors effet de sol)

Tuyau de 40cm de diamètre

1 flèche = 1 mesure (N)

- Moins de mesures (peu de place)
- Schéma similaire
- Forces similaires

Tuyau de 65cm de diamètre avec covariance

- Ellipse = covariance de la perturbation durant la mesure
- Variance plus faible que les perturbations
- Plus de variance dans la zone "effet de sol"

Tuyau de 50cm de diamètre avec covariance

- Ellipse = covariance de la perturbation durant la mesure
- Variance plus importante que dans le tuyau de 65cm
- Plus encore dans la zone "effet de sol"

Tuyau de 40cm de diamètre avec covariance

- Ellipse = covariance de la perturbation durant la mesure
- Variance très importante
- Plus encore dans la zone "effet de sol"

Exploitation des symétries

Coordonnées polaires

- Respect des symétries
- Non continue (angle)

Coordonnées cartésiennes

- Ignore les symétries
- Continue

Coordonnées hybrides

- Coordonnées polaires modifiées
- Remplace l'angle par (sin,cos)
- Continue
- Coordonnés cartésiennes + rayon

Enrichissement des données par symétrie

Choix des symétries

65-Polaire

Symétrie = erreur moins dispersée

- Représentation sans effet pour GP
- Représentation polaire moins bien pour NN
- Symétrie = erreur plus grande pour les GP (attendu)
- Choix de la représentation cartésienne et de l'enrichissement par symétrie

Erreur d'apprentissage (65cm)

65-Cartésienne

65-Hybride

Importance du type de prédiction pour les réseaux de neurones

- Quel impact d'une prédiction de l'ensemble des perturbations $(F_{x,y,z}, \tau_{x,y,z})$ par rapport à uniquement celles qui nous intéressent (F_x, F_y) ?
- Partiel est un peu mieux

Distribution de l'erreur pour les réseaux de neurones

Résultat et analyse des perturbations (50cm GP)

- Disposition similaire des perturbations
- Effet de sol plus fort (déjà présent dans les mesure)
- Zone stable plus éloignée du sol

Interpolation - tuyau de 40cm

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Perturbations

Contrôle optimal

Apprentissage Estimation d'état U-chain

Approche pour la résolution

Approches principales:

dites indirectes:

Résolution de l'équation différentielle (détermination de conditions KKT sur u) puis optimisation dans l'espace des solutions (optimize then discretize)

dites directes:

Discrétisation de l'équation, restriction de x et $\mathfrak u$ à un espace de dimension finie et optimisation sous contrainte dans cet espace (discretize then optimize)

Approche choisie:

- directe.
- u et x sont constants par morceaux: temps discrétisé.
- Formulation proche de la simulation
- Optimisation non linéaire sur un espace vectoriel.

Approche pour la résolution II

Single shooting:

- Trajectoire en un seul morceau
- x(t) déduit récursivement x(0), de u(t) et x(t-1)
- Rend C très non linéaire par rapport à u

Multiple shooting:

- Trajectoire découpée en sous trajectoires
- x(t) devient optimisable
- Introduction de contraintes forcer
 x(t) à respecter la dynamique
- Découple partiellement les variables optimisées
- Approche choisie

Résultats boucle ouverte sans déviation au modèle utilisé

Figure: Tâche de stabilisation en simulation pour un quadrotor aux caractétistiques du Crazyflie par résolution du problème de contrôle optimal en l'absence de perturbations

Résultats boucle ouverte avec déviation au modèle utilisé

Figure: Tâche de stabilisation en simulation pour un quadrotor aux caractétistiques du Crazyflie par résolution du problème de contrôle optimal en présence de perturbations

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Perturbations Contrôle optimal

Apprentissage

Estimation d'état

Courbe d'apprentissage

Plan

Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

Perturbations Contrôle optimal Apprentissage

Estimation d'état

U-chain

Mesures des télémètres

Estimation d'état régression linéaire théorie

Estimation d'état modèle inverse théorie

Estimation d'état modèle inverse données

Plan

Annexe

U-chain

Résultats en simulation

