# Apprentissage d'une loi de commande optimale d'un petit quadrotor pour le vol dans des tuyaux cylindriques

Vladislav Tempez

Directeurs de thèse : Jean-Baptiste MOURET, Franck RUFFIER

Loria, INRIA

27 Juin 2022

#### Les environnements souterrains

## Où et quoi?

- Bâtiments et tunnels
- Conduits d'aération
- Pyramides!



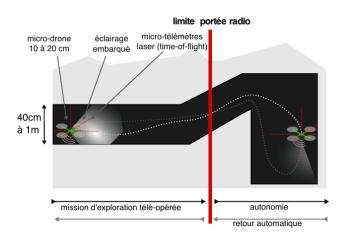
# Pourquoi avec des robots ?

- Trop étroit pour des humains
- Dangereux, difficile d'accès, instable, mal aéré

# Pourquoi avec des robots volants?

- Évite un sol encombré (objets, liquide, etc)
- Gère les portions verticales ou pentues
- Parcours rapide de longs réseaux

# Les environnements souterrains, exemple d'usage



# Les environnements souterrains: difficultés pour les drones

#### Difficultés

- Se perturbe lui-même (flux d'air en intérieur)
- Étroit (peu de marge de manœuvre, risque de collision)
- Instable (collision=crash)



Photo: nicolasdohr.com

Vidéo drone perturbé (tuyau de 65cm)

Drone volant dans un tuyau de 65cm de diamètre

# Le Crazyflie

# Caractéristiques du Crazyflie

- 27g
- 4 rotor à 0.16N de poussée maximal (0.64N au total)
- 10cm de diagonale
- Firmware open source
- Système de modules pour ajouter ou retirer des fonctionnalités
- Plusieurs versions à partir de la même carte (moteurs brushless, variante plus grande)

Le quadrotor Crazyflie avec le deck multiranger (télémètres laser)



#### Contributions

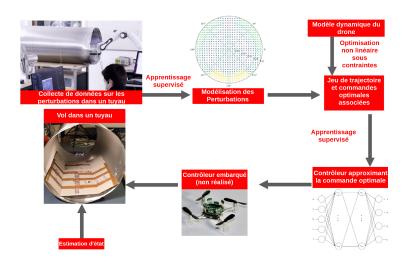
#### Mesure et Modélisation

- Dispositif et protocole de mesure des perturbations statique dans un tuyau
- Collecte de données de perturbations dans des tuyaux de diamètre différent
- Apprentissage d'un modèle pour interpoler ces perturbations en tout point
- 4. Deux méthodes d'estimation de la position dans un tuyau.

#### Commande

- Formulation et implémentation d'un contrôleur optimal pour quadrotor pour la stabilisation et le suivi de trajectoires
- Intégration du modèle des perturbations au contrôleur optimal
- 3. Apprentissage supervisé d'un réseau de neurones imitant le contrôleur optimal

# Contributions



## Plan

#### Introduction

## Perturbations dans un tuyau

#### Introduction

Dispositif et Protocole de mesure Apprentissage d'un modèle d'interpolation

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

# **Objectifs**

- Vérifier l'existence des perturbations supposées
- Quantifier et cartographier ces perturbations
- Modéliser ces perturbations



Photo: nicolasdohr.com

# État de l'art

#### Effet de sol

Répulsion proche du sol, vu sur les hélicoptères depuis des décennies<sup>1</sup>

# Effet de plafond

Effet d'aspiration à proximité d'un plafond<sup>2</sup>

#### Effet d'interaction entre rotors

Par des techniques de Vélocimétrie par Image de Particule (PIV): analyser l'interaction de flux de plusieurs rotors adjacents<sup>3</sup>

#### Dans un tuyau

#### Rien

<sup>&</sup>lt;sup>1</sup>Cheeseman et Bennett, Aeronautical Research Council Reports and Memoranda 3021, 1955

 $<sup>^2</sup>$ Powers et al., 13th International Symposium on Experimental Robotics, 2013

<sup>&</sup>lt;sup>3</sup>Shukla et Komerath, Drones 2.4, 2018

#### Plan

#### Introduction

#### Perturbations dans un tuyau

Introduction

#### Dispositif et Protocole de mesure

Apprentissage d'un modèle d'interpolation

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

# Mesure des perturbations dans un tuyau

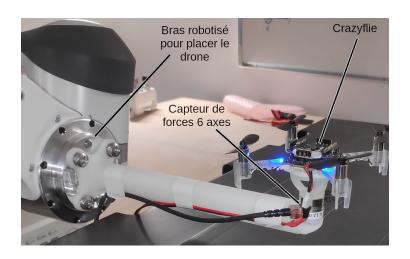
#### Mesure en vol libre

- Mesure en un point précis difficile
- Autonomie faible, nécessite une intervention régulière
- Robot instable, difficile à automatiser (crash fréquent)
- Mesure de la position difficile dans un tuyau

# Mesures en statique (capteur de force 6 axes)

- Fixé donc pas de crash
- Alimenté donc autonome
- Mesure directe des perturbations

# Dispositif de mesure



## Protocole de mesure et traitement

- Mesure en extérieur (valeur de référence, 5s, moteurs allumés)
- Placement en intérieur (bras robot)
- Mesure en intérieur (différence à la référence, 10s)
- Filtrage à 1Hz de la mesure intérieure
- Valeur moyenne = perturbation statique
- Incertitude contenue dans la variance du signal

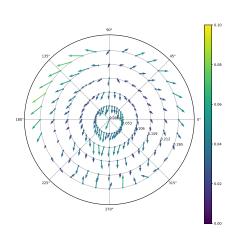
Séquence vidéo de collecte de données (accéléré x10)

Vidéo de la collecte de données (accéléré x10)

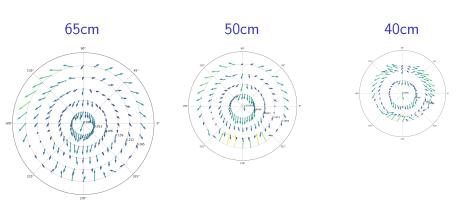
# Perturbations mesurées (65cm)

- $\simeq 100$  points par tuyau (20s/point)
- Mesures dans 3 tuyaux (40cm, 50cm, 65cm)
- Forces non négligeables (0.1N)
- Effet de sol
- Aspiration par les parois
- Pas d'incertitude pour ne pas surcharger

# 1 flèche = 1 mesure (en N)



# Sur les autres tuyaux



#### Plan

#### Introduction

#### Perturbations dans un tuyau

Introduction
Dispositif et Protocole de mesure

Apprentissage d'un modèle d'interpolation

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

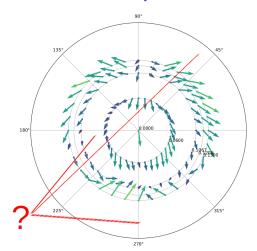
# Pourquoi?

 Pour l'utiliser dans un futur contrôleur (besoin d'estimer en des points intermédiaires)

Fonction de prédiction des forces apprise:

$$f:(x,z)\mapsto (f_x,f_z)$$

# Mesure dans un tuyau de 40cm



# Processus gaussien<sup>1</sup> (GP) ou réseau de neurones<sup>2</sup> (NN)?

# Avantages (NN)

- Classique pour l'apprentissage supervisé
- Peu coûteux à évaluer

# Limites (NN)

- Apprentissage coûteux
- Peu efficace en régime de données faible
- Sur-apprentissage

# Avantages (GP)

- Efficace de régime de données faible
- Incertitude intégrée à la prédiction

# Limites (GP)

- Coût d'évaluation cubique en la quantité de données
- Difficile à mettre en place en régime de données important

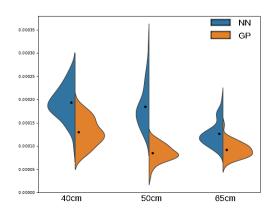
<sup>&</sup>lt;sup>1</sup>Rasmussen et Williams, MIT Press, 2006

<sup>&</sup>lt;sup>2</sup>Haykin, Prentice Hall 1999

# Choix de l'architecture

- Séparation des points en deux ensembles (90-10)
- Appris sur 90% des points
- Testé sur 10% restants

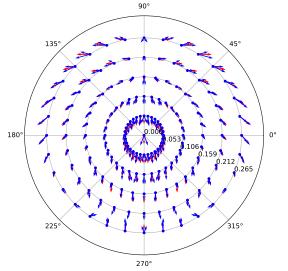
- Erreur plus faible pour GP
- Erreur moins dispersée pour GP
- GP utilisé pour la suite



Comparaison des erreurs sur l'ensemble de test

# Visualisation de l'erreur de prédiction

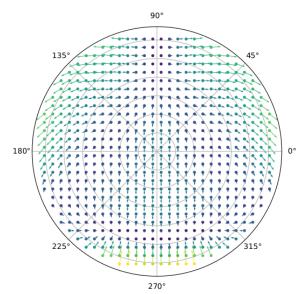




Mesures (symetrisées) - Prédictions

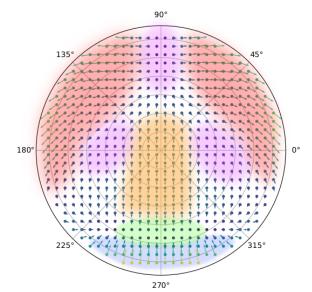
# Résultat et analyse des perturbations (65cm - GP)

- Schéma symétrique
- Assez régulier (conséquence modélisation par GP)



# Résultat et analyse des perturbations (65cm - GP)

- Effet de sol
- Aspiration latérale
- Faible intensité mais instables
- Constantes vers le bas
- Stable et de faible intensité



#### Bilan

#### Observations

- Perturbations statiques non négligeables
- Effet de sol, mais aussi une aspiration par les parois
- Le modèle d'interpolation permet d'observer des zones stables et instables

#### Limites

- Composantes statiques uniquement
- Probable biais causé par le dispositif de mesure

#### Plan

#### Introduction

Perturbations dans un tuyau

#### Contrôle optimal d'un quadrotor Introduction

Modèles et équations d'un quadrotor Problème du contrôle optimal

Apprentissage par imitation

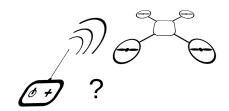
Autres aspects abordés

Conclusion

Annexe

# Objectifs

- Commander un robot à la dynamique non linéaire
- Prévenir, rejeter ou limiter les perturbations dues au tuyau
- Exercer un contrôle précis pour éviter les collisions



# État de l'art

# Backstepping control

Approche standard: organisation hiérarchique et récursive des états du robot à commander<sup>1</sup>.

# Apprentissage par renforcement

Recherche d'un contrôleur uniquement avec des exemples d'interaction (environnement simulé) <sup>2</sup>.

# Commande Optimale et Prédictive

Permet l'intégration d'un modèle des perturbations plus aisée, capacité à planifier et à prévoir<sup>34</sup>. S'appuie sur la résolution de problème d'optimisation par des solveurs bien établis.

<sup>&</sup>lt;sup>1</sup>Lee, Leok et McClamroch, 49th IEEE Conference on Decision and Control, 2010

<sup>&</sup>lt;sup>2</sup>Molchanov et al, IROS, 2019

<sup>&</sup>lt;sup>3</sup>Carlos et al, ICARCV, 2020

<sup>&</sup>lt;sup>4</sup>Bansal et al,IEEE 55th Conference on Decision and Control, 2016

## Plan

#### Introduction

Perturbations dans un tuyau

#### Contrôle optimal d'un quadrotor

Introduction

Modèles et équations d'un quadrotor

Problème du contrôle optimal

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

# État d'un quadrotor

# Représentation de l'état

$$p = \overrightarrow{O_W O_B}$$

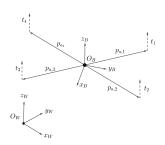
$$v = \frac{dp}{dt}$$

$$R_B^W = \left( [x_B]_W \middle| [y_B]_W \middle| [z_B]_W \right)$$

$$\omega_{WB} = \text{vitesse angulaire}$$

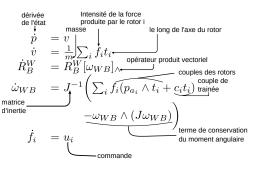
$$f_i, \quad i \in [|0, 4|]$$
force exercée
$$par \text{ le rotor } i$$

# Schéma d'un quadrotor

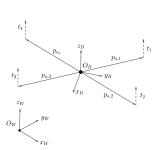


# Dynamique d'un quadrotor

# Équation de la dynamique



# Schéma d'un quadrotor



#### Plan

#### Introduction

Perturbations dans un tuyau

#### Contrôle optimal d'un quadrotor

Introduction
Modèles et équations d'un quadrotor
Problème du contrôle optimal

Apprentissage par imitation

Autres aspects abordés

Conclusion

Annexe

## Formulation

# Objectif

Trouver la commande  $\mathfrak u$  telle que l'état du robot x minimise un coût C préalablement spécifié<sup>1</sup>.

#### **Notations**

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$  la fonction de coût
- f(x(t), u(t)) → x la dynamique de l'état
  x<sub>0</sub>, t<sub>0</sub> l'état et l'instant initiaux

## Problème de contrôle optimal

$$\begin{split} \mathfrak{u}^* &= \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T}, \mathcal{U})}{\operatorname{arg \, min}} \int_{t_0}^{t_f} C(x(t), \mathfrak{u}(t)) dt \\ x(t_0) &= x_0 \\ \dot{x}(t) &= f(x(t), \mathfrak{u}(t)) \end{split}$$

<sup>&</sup>lt;sup>1</sup>Betts, Advances in Design and Control, 2010

## Formulation

# Objectif

Trouver la commande  $\mathfrak u$  telle que l'état du robot x minimise un coût C préalablement spécifié<sup>1</sup>.

#### **Notations**

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$  la fonction de coût
- f(x(t), u(t)) → x la dynamique de l'état
  x<sub>0</sub>, t<sub>0</sub> l'état et l'instant initiaux

# Problème de contrôle optimal

$$\begin{split} & \overset{\text{Commande}}{\underset{\text{Optimale}}{\text{Optimale}}} & \to \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} & \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ & x(t_0) = x_0 \\ & \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \end{split}$$

<sup>&</sup>lt;sup>1</sup>Betts, Advances in Design and Control, 2010

## Formulation

# Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié<sup>1</sup>.

#### **Notations**

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$  la fonction de coût
- $f(x(t),\mathfrak{u}(t))\mapsto\dot{x}$  la dynamique de l'état
- $x_0, t_0$  l'état et l'instant initiaux

# Problème de contrôle optimal

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} & \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ x(t_0) = x_0 \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \end{array}$$

<sup>&</sup>lt;sup>1</sup>Betts, Advances in Design and Control, 2010

# Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié<sup>1</sup>.

### **Notations**

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$  la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$  la dynamique de l'état
- $x_0, t_0$  l'état et l'instant initiaux

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} & \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ x(t_0) = x_0 & \text{Accumulation du} \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) & \text{deconstant} \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) & \text{deconstant} \\ \end{array}$$

<sup>&</sup>lt;sup>1</sup>Betts, Advances in Design and Control, 2010

# Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié<sup>1</sup>.

### **Notations**

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$  la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$  la dynamique de l'état
- $x_0, t_0$  l'état et l'instant initiaux

Commande Optimale 
$$\to \mathfrak{u}^* = \mathop{\arg\min}_{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})} \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t))dt$$
  $x(t_0) = x_0$  Accumulation du coût sur la durée de la trajectoire

<sup>&</sup>lt;sup>1</sup>Betts, Advances in Design and Control, 2010

# Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié<sup>1</sup>.

### **Notations**

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$  la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$  la dynamique de l'état
- $x_0, t_0$  l'état et l'instant initiaux

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} \\ \qquad \mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U}) \\ \end{array} \\ \begin{array}{c} \int_{t_0}^{t_f} C(x(t),\mathfrak{u}(t)) dt \\ \text{Coût de l'état courant} \\ \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \\ \end{array} \\ \begin{array}{c} \text{Accumulation du} \\ \text{coût sur la durée} \\ \text{de la trajectoire} \end{array}$$

<sup>&</sup>lt;sup>1</sup>Betts, Advances in Design and Control, 2010

# Objectif

Trouver la commande u telle que l'état du robot x minimise un coût C préalablement spécifié<sup>1</sup>.

### **Notations**

- x(t) l'état du système
- $C(x(t), \mathfrak{u}(t) \mapsto C(t)$  la fonction de coût
- $f(x(t), \mathfrak{u}(t)) \mapsto \dot{x}$  la dynamique de l'état
- $x_0, t_0$  l'état et l'instant initiaux

$$\begin{array}{c} \text{Commande} \\ \text{Optimale} \rightarrow \mathfrak{u}^* = \underset{\mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U})}{\operatorname{arg\,min}} \\ \qquad \mathfrak{u} \in \mathcal{F}(\mathcal{T},\mathcal{U}) \\ \text{Condition initiale} \\ \text{Condition initiale} \\ x(t_0) = x_0 \\ \text{Dynamique de} \\ \text{l'état} \\ \dot{x}(t) = f(x(t),\mathfrak{u}(t)) \end{array} \\ \begin{array}{c} \text{Espace des commandes} \\ \text{Commandes} \\ \text{Coût de l'état courant} \\ \text{Accumulation du coût sur la durée} \\ \text{de la trajectoire} \\ \end{array}$$

<sup>&</sup>lt;sup>1</sup>Betts, Advances in Design and Control, 2010

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k,}{\operatorname{argmin}} \sum_{i=0}^{k+1} C(x_i, u_i)$$
 $x_0 = x(t_0),$ 
 $\forall i \in [0, k],$ 
 $x_{i+1} = f(x_i, u_i, dt)$ 

<sup>&</sup>lt;sup>1</sup>Andersson et al, Mathematical Programming Computation 11.1, 2019

<sup>&</sup>lt;sup>2</sup>Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*,x^*)= \mathop{\mathsf{argmin}}_{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \ \mathsf{correspondants}}} \sum_{i=0}^{k+1} C(x_i,u_i)$$

<sup>&</sup>lt;sup>1</sup>Andersson et al, Mathematical Programming Computation 11.1, 2019

<sup>&</sup>lt;sup>2</sup>Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \mathop{\rm arg\,min}_{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}} \sum_{i=0}^{k+1} C(x_i, u_i)$$

<sup>&</sup>lt;sup>1</sup>Andersson et al, Mathematical Programming Computation 11.1, 2019

<sup>&</sup>lt;sup>2</sup>Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{optimales et d'états correspondants}}{\sup u \in \mathcal{U}^k, \ x \in \mathcal{X}^k,} \sum_{i=0}^{k+1} C(x_i, u_i)$$

$$x_0 = x(t_0),$$

$$\forall i \in [0, k],$$

$$x_{i+1} = f(x_i, u_i, dt)$$

<sup>&</sup>lt;sup>1</sup>Andersson et al, Mathematical Programming Computation 11.1, 2019

<sup>&</sup>lt;sup>2</sup>Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{\substack{\text{dimension finie} \\ \text{dimension finie} \\ u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{Séquence de commandes optimales et d'états correspondants}} \underbrace{\sum_{i=0}^{k+1} C(x_i, u_i)}_{\substack{\text{Coût de l'étape i} \\ \text{discrète}}} \times_{0} = x(t_0), \\ \forall i \in [0, k], \\ x_{i+1} = f(x_i, u_i, dt)$$

<sup>&</sup>lt;sup>1</sup>Andersson et al, Mathematical Programming Computation 11.1, 2019

<sup>&</sup>lt;sup>2</sup>Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}}{\operatorname{argmin}} \sum_{\substack{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}} \sum_{i=0}^{k+1} C(x_i, u_i)$$

<sup>&</sup>lt;sup>1</sup>Andersson et al, Mathematical Programming Computation 11.1, 2019

<sup>&</sup>lt;sup>2</sup>Wächter et Biegler, Mathematical Programming 106.1, 2006

Résolution du problème d'optimisation non linéaire sous contraintes suivant:

$$(u^*, x^*) = \underset{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \text{correspondants}}{\operatorname{arg\,min}} \sum_{u \in \mathcal{U}^k, \ x \in \mathcal{X}^k, \\ \operatorname{correspondants}} \sum_{i=0}^{k+1} C(x_i, u_i) \sum_{i=0}^{k+1} C(x_i, u$$

<sup>&</sup>lt;sup>1</sup>Andersson et al, Mathematical Programming Computation 11.1, 2019

<sup>&</sup>lt;sup>2</sup>Wächter et Biegler, Mathematical Programming 106.1, 2006

# Principe et apport de la commande prédictive

# Principe de la commande prédictive<sup>1</sup>

- Calculer une "bonne" trajectoire en boucle ouverte sur une durée finie
- Exécuter la première commande
- Planifier à nouveau à partir de l'état actuel

# **Avantages**

- Referme la boucle en utilisant un retour d'état à chaque instant
- Tire parti des capacités de planification et du modèle utilisé
- Agnostique vis à vis de l'algorithme de calcul de trajectoire en boucle ouverte (ici résolution du problème de contrôle optimal)

<sup>&</sup>lt;sup>1</sup>Rawlings, Mayne, Diehl, Nob Hill Publishing Madison, 2017

# Suivi de trajectoire avec intégration du modèle appris des perturbations au contrôle optimal

### Simulateur

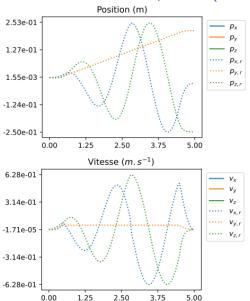
- Dynamique du drone
- Modèle GP appris des perturbations statiques

# Contrôle optimal

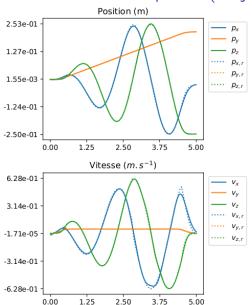
- Dynamique du drone
- Modèle GP appris des perturbations statiques

- Tâche de suivi de trajectoire
- Proximité des parois croissante (zone instable)

# Suivi de trajectoire avec intégration du modèle appris des perturbations au contrôle optimal (Référence)



# Suivi de trajectoire avec intégration du modèle appris des perturbations au contrôle optimal (Trajectoire)



# Suivi de trajectoire SANS intégration du modèle appris des perturbations au contrôle optimal

### Simulateur

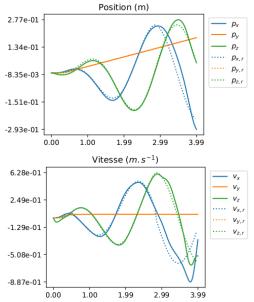
- Dynamique du drone
- Modèle GP appris des perturbations statiques

## Contrôle optimal

- Dynamique du drone
- •

- Tâche de suivi de trajectoire
- Proximité des parois croissante (zone instable)

# Suivi de trajectoire SANS intégration du modèle appris des perturbations au contrôle optimal



# Bilan commande prédictive basée contrôle optimal (MPC)

# **Avantages**

- Intégration générique d'éléments à la dynamique
- Compatibilité avec des solveurs externes et bien établis
- Capable de prévoir les perturbations pour voler proche des parois malgré l'aspiration

### Inconvénients

- Coût en calcul important pour la résolution de nombreux problèmes de contrôle optimal (plusieurs dizaines de fois le temps réel)
- Assez dépendant de la qualité du modèle
- Nécessité d'adapter les paramètres au robot (pas de temps, horizon)

# Plan

#### Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

# Apprentissage par imitation Introduction

I neorie

Autres aspects abordés

Conclusion

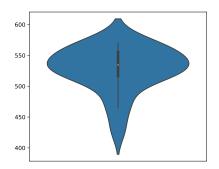
Annexe

# Pourquoi apprendre?

- MPC: trop long
- Capacité de calcul faible
- Peu d'espoir d'améliorer assez le MPC pour tourner en temps réel

- Un NN à 200Hz tourne sur le Crazyflie
- Approximation du MPC par un NN appris (imitation, supervisé)

# Temps de calcul (s) pour 1s de trajectoire par le MPC, distribution pour 20 trajectoires



# État de l'art

# Apprentissage par imitation

 À l'aide de démonstrations d'un pilote d'hélicoptère pour des acrobaties<sup>1</sup>

# Démonstration guidant l'apprentissage

 Démonstrations choisies proches de ce que peut faire le contrôleur en cours d'apprentissage<sup>2</sup>

# Démonstration pour initialiser un contrôleur

• Imitation préalable à un apprentissage par renforcement<sup>3</sup>

 $<sup>^{1}</sup>$ Abbeel, Coates et Ng, The International Journal of Robotics Research 29.13, 2010

<sup>&</sup>lt;sup>2</sup>Levine et Koltun, ICML, 2013

<sup>&</sup>lt;sup>3</sup>Lin et al. IROS, 2019

# Plan

#### Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

#### Apprentissage par imitation

Introduction

Théorie

Résultats et limites

Autres aspects abordés

Conclusion

Annexe

# **Objectifs**

• Trouver les paramètres  $\theta$  d'un contrôleur  $\mathcal{C}_{\theta}$  qui imite au mieux un contrôleur expert  $\mathcal{C}_{\mathcal{E}}$ 

$$\theta^* = \arg\min_{\theta} \underset{x \sim P_{\theta}(x)}{\mathbb{E}} \left[ ||\mathcal{C}_{E}(x) - \mathcal{C}_{\theta}(x)||^2 \right]$$

# Objectifs

• Trouver les paramètres  $\theta$  d'un contrôleur  $\mathcal{C}_{\theta}$  qui imite au mieux un contrôleur expert  $\mathcal{C}_{\mathcal{E}}$ 

$$\begin{aligned} & \theta^* = \underset{\theta}{\text{arg min}} \underset{x \sim P_{\theta}(x)}{\mathbb{E}} \left[ ||\mathcal{C}_{E}(x) - \mathcal{C}_{\theta}(x)||^2 \right] \\ & \text{Paramètres} \\ & \text{optimaux du} \\ & \text{contrôleur} \end{aligned}$$

# **Objectifs**

• Trouver les paramètres  $\theta$  d'un contrôleur  $\mathcal{C}_{\theta}$  qui imite au mieux un contrôleur expert  $\mathcal{C}_{\mathcal{E}}$ 

$$\begin{array}{l} \theta^* = \arg\min_{\theta} \sum_{x \sim P_{\theta}(x)}^{\text{Commande}} |||\mathcal{C}_E(x) - \mathcal{C}_{\theta}(x)||^2] \\ \text{Paramètres optimaux du contrôleur.} \end{array}$$

# **Objectifs**

• Trouver les paramètres  $\theta$  d'un contrôleur  $\mathcal{C}_{\theta}$  qui imite au mieux un contrôleur expert  $\mathcal{C}_{\mathcal{E}}$ 



# **Objectifs**

• Trouver les paramètres  $\theta$  d'un contrôleur  $\mathcal{C}_{\theta}$  qui imite au mieux un contrôleur expert  $\mathcal{C}_{E}$ 

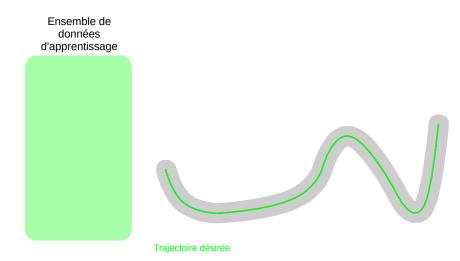


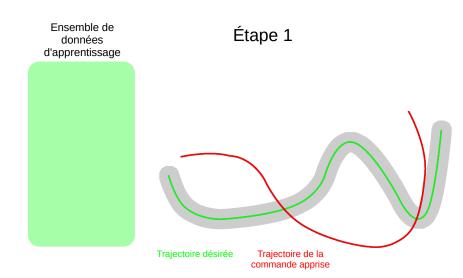
# Résolution (DAGGER)

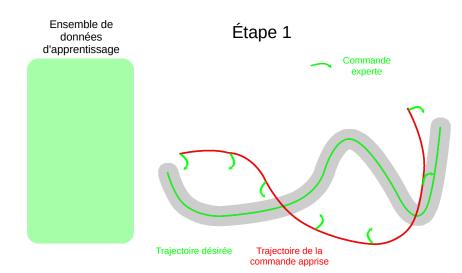
# Principe de DAGGER<sup>1</sup>

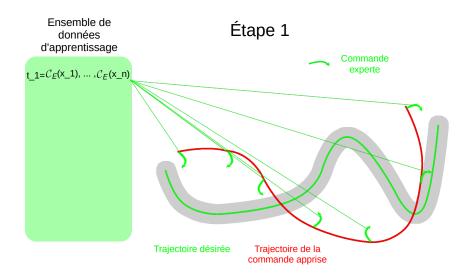
- Approche la distribution des états rencontré par échantillonnage itéré
  - A partir d'un ensemble initialement vide
  - Générer une trajectoire avec  $\mathcal{C}_{\theta_0}$
  - Demander à l'expert les commandes optimales pour les états de la trajectoire générée
  - Mettre à jour  $\theta$  pour imiter l'expert
  - Recommencer
- Fait coïncider la distribution des états rencontré avec ceux utilisés pour l'apprentissage
- Expert = contrôle optimal
- Ajout à l'ensemble d'apprentissage de toute la trajectoire calculée lors de la résolution du problème de contrôle optimal

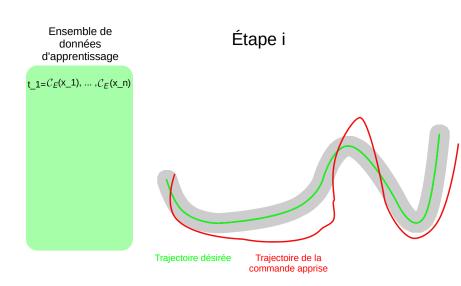
<sup>&</sup>lt;sup>1</sup>Ross, Gordon et Bagnell, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011

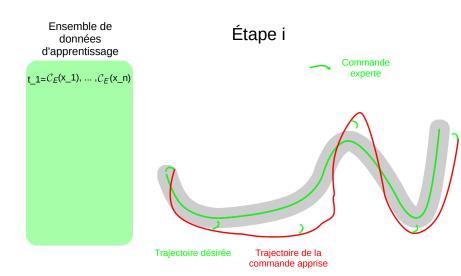


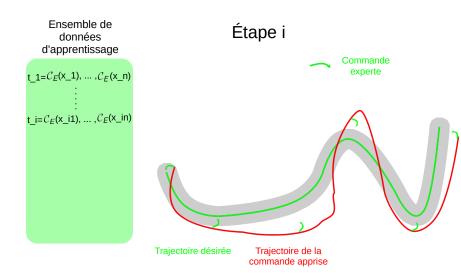












Ensemble de données d'apprentissage  $t_1 = C_E(x_1), \dots, C_E(x_n)$  $t_i = C_E(x_i1), \dots, C_E(x_in)$ 

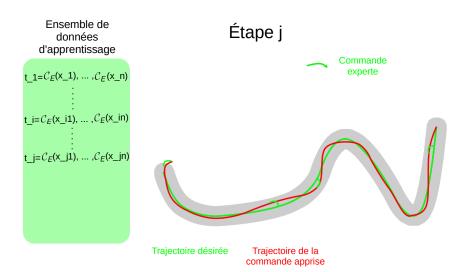
# Étape j



Trajectoire désirée

Trajectoire de la commande apprise

#### Illustration DAGGER



#### Plan

#### Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

#### Apprentissage par imitation

Introduction

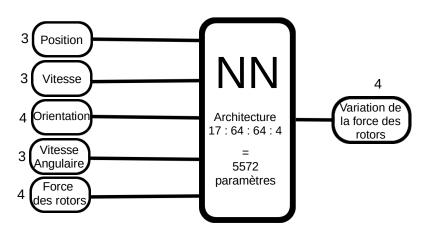
Résultats et limites

Autres aspects abordés

Conclusion

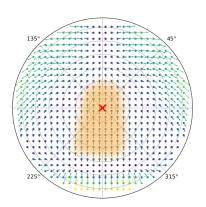
Annexe

## Architecture du contrôleur appris

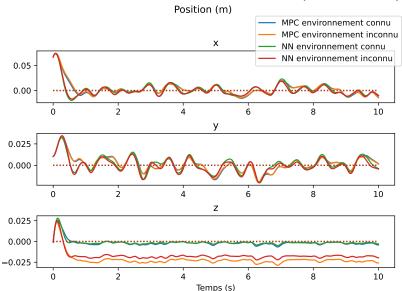


#### Tâche de stabilisation

- Amener le drone au centre du tuyau à l'horizontale
- État de départ perturbé
  - Pas au centre
  - Vitesse non nulle
  - Orientation non horizontale
- Perturbations plus faciles que pour le suivi



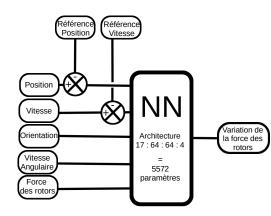
# Comparaison des performances de stabilisation en fonction de la connaissance de l'environnement (tuyau 65cm)



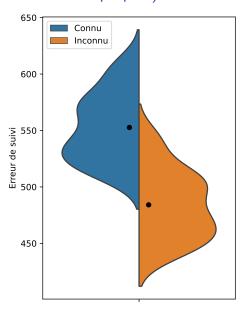
### Suivi de trajectoire

#### Suivi de trajectoire

- Référence en entrée: quantité de données pour apprendre trop importante
- Solution: différence entre l'état et la référence en entrée
- Exploitation du modèle des perturbations difficile



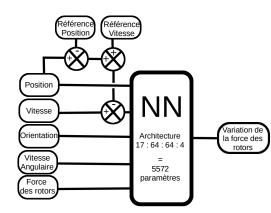
# Limite: suivi de trajectoire (tuyau 65 cm simulé, 20 répliques)



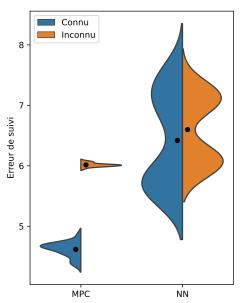
#### Adaptation

#### Adaptation

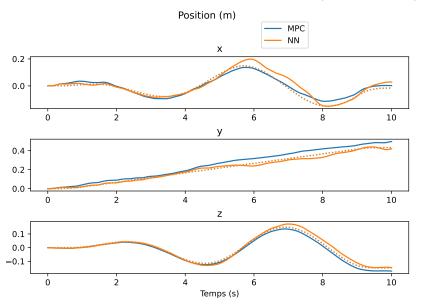
- Apprendre un contrôleur en vitesse (poids nul pour la position dans le coût MPC)
- Modifier la référence en vitesse pour asservir la position



# Résultat adaptation: distribution de l'erreur de suivi (tuyau 65cm, 20 répliques)



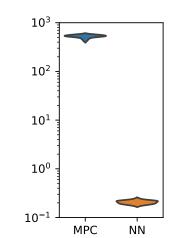
## Suivi de trajectoire, comparaison au MPC (tuyau 65cm)



#### Conclusion

- Contrôleur appris capable de stabiliser et suivre des trajectoires
- Intégration du modèle de l'environnement possible et utile
- Temps de calcul bien plus faible avec le contrôleur NN appris (600Hz vs 0.3Hz max)

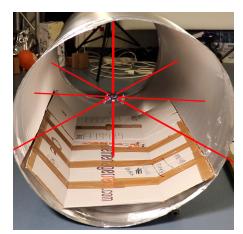
Distribution du temps de calcul de la commande pour 1s de trajectoire



#### Estimation d'état

- Estimer la position pour un contrôle précis
- Estimation de l'équation des droites portées par les murs : lacet et position longitudinale du drone
- Inversion de l'équation de la distance aux parois : position verticale et longitudinale

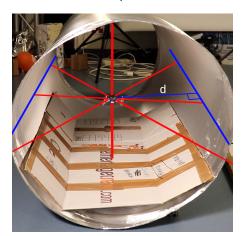
#### Localisation avec des télémètres



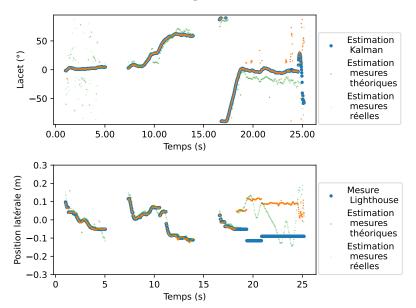
#### Estimation d'état

- Estimer la position pour un contrôle précis
- Estimation de l'équation des droites portées par les murs : lacet et position longitudinale du drone
- Inversion de l'équation de la distance aux parois : position verticale et longitudinale

#### Estimation avec équations de droite



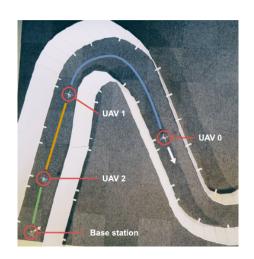
## Estimation d'état régression linéaire données



## Organisation d'une flotte de drones

# Algorithme de positionnement d'une flotte dans un tunnel

- Ajustement automatique et décentralisé de la position pour le maintien d'un contact radio <sup>1</sup>
- En régulant la qualité de signal
- Uniquement pour des environnements en 1D
- Contribution: preuve de l'optimalité et de la correction de l'algorithme



<sup>&</sup>lt;sup>1</sup>Laclau et al, Frontiers in Robotics and Al 8, 2021

## Séquence vidéo de la flotte de drones

Vidéo du contrôle décentralisé d'une flotte de drones

#### Limites et extensions de mes travaux de thèse

#### Limites

 Estimation d'état validée en simulation mais mais à affiner pour les données réelles

- Mesure des perturbation statiques uniquement
- Biais dans les mesures (effets au bord, présence du dispositif)
- Uniquement réalisé pour un drone non incliné

#### **Extensions**

 Apprentissage d'un contrôleur directement à partir des mesures des capteur

 Utiliser un premier contrôleur avec modèle, récolter des données en vol libre, recommencer

#### Limites et extensions de mes travaux de thèse

#### Contrôleur appris par imitation

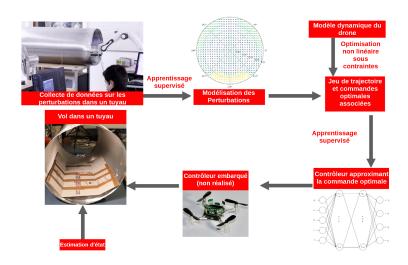
- Contrôleur appris par imitation pas encore embarqué
- Robustesse du contrôleur appris par imitation probablement limitée (évaluée uniquement avec le "vrai" modèle et en simulation)
- Un contrôleur similaire fait voler le Crazyflie (Corentin Bunel)

#### Autres approches indépendantes

- Architecture complètement actionnée<sup>1</sup> (non coaxiale) pour un meilleur rejet des perturbations du tuyau
- Apprentissage d'autre contrôleur par imitation: contrôle à plus haut niveau, apprentissage des gains d'un contrôleur hiérarchique

<sup>&</sup>lt;sup>1</sup>Rashad et al, IEEE Robotics Automation Magazine 27.3, 2020

#### Questions?



#### Plan

#### Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

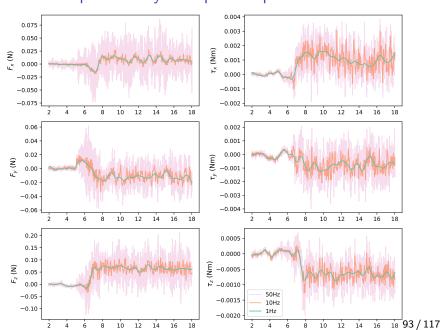
Conclusion

#### Annexe

#### Perturbations

Contrôle optimal Apprentissage Estimation d'état U-chain

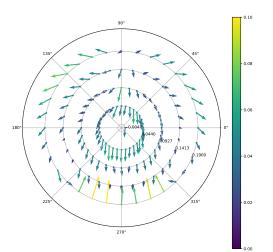
## Composante dynamique des perturbations



## Tuyau de 50cm de diamètre

#### 1 flèche = 1 mesure (N)

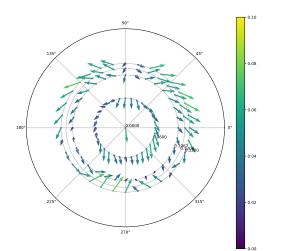
- Effet de sol plus important
- Aspiration par les parois similaire
- Forces similaires (hors effet de sol)



## Tuyau de 40cm de diamètre

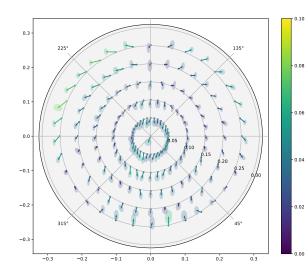
#### 1 flèche = 1 mesure (N)

- Moins de mesures (peu de place)
- Schéma similaire
- Forces similaires



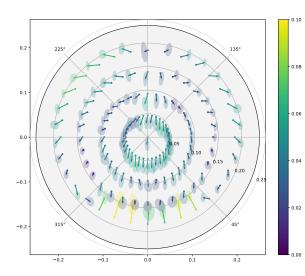
### Tuyau de 65cm de diamètre avec covariance

- Ellipse = covariance de la perturbation durant la mesure
- Variance plus faible que les perturbations
- Plus de variance dans la zone "effet de sol"



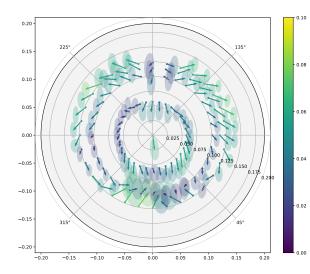
## Tuyau de 50cm de diamètre avec covariance

- Ellipse = covariance de la perturbation durant la mesure
- Variance plus importante que dans le tuyau de 65cm
- Plus encore dans la zone "effet de sol"



### Tuyau de 40cm de diamètre avec covariance

- Ellipse = covariance de la perturbation durant la mesure
- Variance très importante
- Plus encore dans la zone "effet de sol"



## Exploitation des symétries

#### Coordonnées polaires

- Respect des symétries
- Non continue (angle)

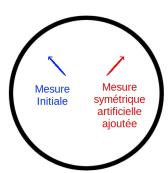
#### Coordonnées cartésiennes

- Ignore les symétries
- Continue

#### Coordonnées hybrides

- Coordonnées polaires modifiées
- Remplace l'angle par (sin,cos)
- Continue
- Coordonnés cartésiennes + rayon

## Enrichissement des données par symétrie



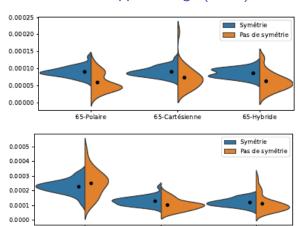
## Choix des symétries

65-Polaire

#### Symétrie = erreur moins dispersée

- Représentation sans effet pour GP
- Représentation polaire moins bien pour NN
- Symétrie = erreur plus grande pour les GP (attendu)
- Choix de la représentation cartésienne et de l'enrichissement par symétrie

#### Erreur d'apprentissage (65cm)



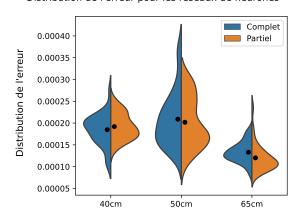
65-Cartésienne

65-Hybride

## Importance du type de prédiction pour les réseaux de neurones

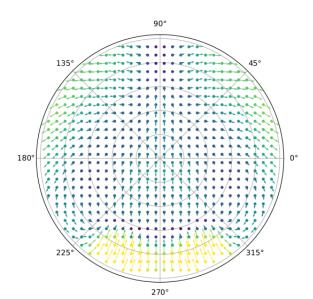
- Quel impact d'une prédiction de l'ensemble des perturbations  $(F_{x,y,z}, \tau_{x,y,z})$ par rapport à uniquement celles qui nous intéressent  $(F_x, F_y)$ ?
- Partiel est un peu mieux

Distribution de l'erreur pour les réseaux de neurones

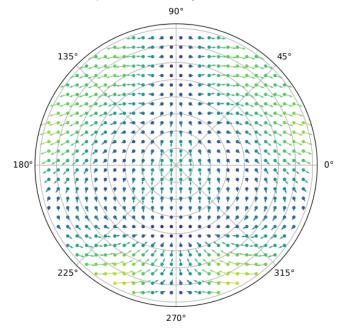


## Résultat et analyse des perturbations (50cm GP)

- Disposition similaire des perturbations
- Effet de sol plus fort (déjà présent dans les mesure)
- Zone stable plus éloignée du sol



## Interpolation - tuyau de 40cm



#### Plan

#### Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

#### Annexe

Perturbations

#### Contrôle optimal

Apprentissage Estimation d'état U-chain

## Approche pour la résolution

#### Approches principales:

#### dites indirectes:

Résolution de l'équation différentielle (détermination de conditions KKT sur u) puis optimisation dans l'espace des solutions (optimize then discretize)

#### dites directes:

Discrétisation de l'équation, restriction de x et  $\mathfrak u$  à un espace de dimension finie et optimisation sous contrainte dans cet espace (discretize then optimize)

#### Approche choisie:

- directe.
- u et x sont constants par morceaux: temps discrétisé.
- Formulation proche de la simulation
- Optimisation non linéaire sur un espace vectoriel.

### Approche pour la résolution II

#### Single shooting:

- Trajectoire en un seul morceau
- x(t) déduit récursivement x(0), de u(t) et x(t-1)
- Rend C très non linéaire par rapport à u

#### Multiple shooting:

- Trajectoire découpée en sous trajectoires
- x(t) devient optimisable
- Introduction de contraintes forcer
   x(t) à respecter la dynamique
- Découple partiellement les variables optimisées
- Approche choisie

#### Résultats boucle ouverte sans déviation au modèle utilisé

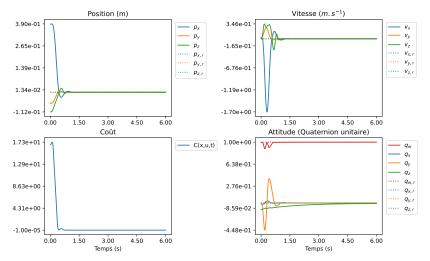


Figure: Tâche de stabilisation en simulation pour un quadrotor aux caractétistiques du Crazyflie par résolution du problème de contrôle optimal en l'absence de perturbations

#### Résultats boucle ouverte avec déviation au modèle utilisé

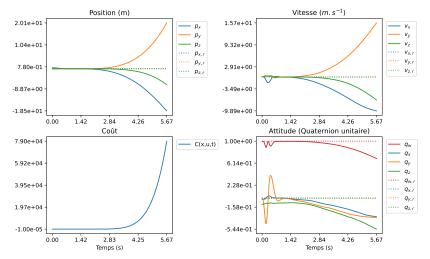


Figure: Tâche de stabilisation en simulation pour un quadrotor aux caractétistiques du Crazyflie par résolution du problème de contrôle optimal en présence de perturbations

#### Plan

#### Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

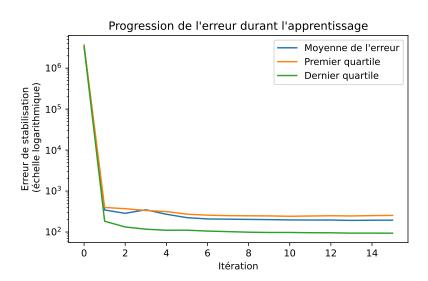
#### Annexe

Perturbations Contrôle optimal

Apprentissage

Estimation d'état

## Courbe d'apprentissage



#### Plan

#### Introduction

Perturbations dans un tuyau

Contrôle optimal d'un quadrotor

Apprentissage par imitation

Autres aspects abordés

Conclusion

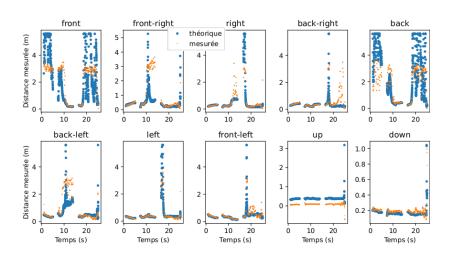
#### Annexe

Perturbations Contrôle optimal Apprentissage

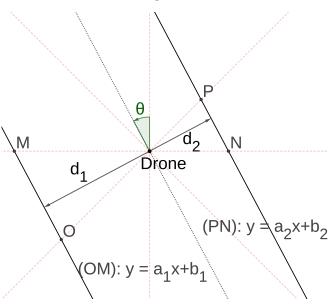
Estimation d'état

U-chain

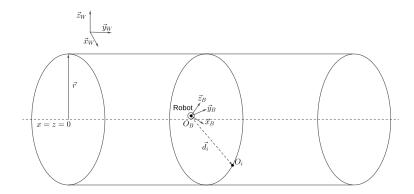
#### Mesures des télémètres



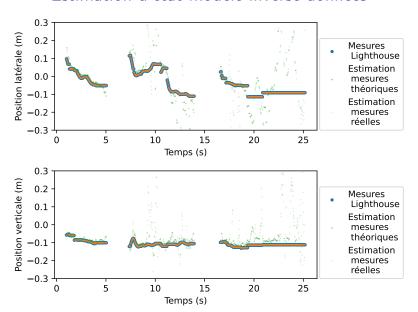
## Estimation d'état régression linéaire théorie



#### Estimation d'état modèle inverse théorie



#### Estimation d'état modèle inverse données



#### Plan

#### Annexe

U-chain

#### Résultats en simulation

